Jump to content

HispanicSlammer

Forum CEO
  • Posts

    6,954
  • Joined

  • Last visited

  • Days Won

    61

Posts posted by HispanicSlammer

  1. well from your description "feel every bump" as in a quick harsh hit or is it more like a loose pogo type bounce that sinks and bounces back up and down a little bit after the bump. Those would be opposite settings on your rebound - harsh I would recommend softening up the rebound a click, test it and soften it up some more till you get a stable compliant ride.

    this would be after you have set sag correctly on your preload

    read the "refrence faq" section on how to do sag.

  2. I know the list of brands is far from complete but I added the major brands that seem to be talked about most here, and those you can find most anywhere - at least in the US. Other seems will be a large portion of this poll.

    discuss, but dont biotch here. Facts mostly please, just gathering data here in the form of a poll

    Ya fergot Mobil MX4T

    I put brand names in one catagory - Moble Covered, motorcycle specific in another - MX4t Covered, too many product lines to go that route your talking about, listing every product is too intensive for a simple poll motorcycle specific covers it.

  3. Facts mostly please, just gathering data here in the form of a poll

    Miguel,

    What happened to the data posted in '05 by Scott the petro-test engineer?

    Good stuff, particularly the fuel contamination data.

    Regards,

    VFR_ATL

    He told me that one of his clients read the info he was posting here and he feared for his job, so he asked me to delete his account and all his posts. Too bad.

  4. I know the list of brands is far from complete but I added the major brands that seem to be talked about most here, and those you can find most anywhere - at least in the US. Other seems will be a large portion of this poll.

    discuss, but dont biotch here. Facts mostly please, just gathering data here in the form of a poll

  5. I like the swinging ladder Idea - when you crash your video camera slingshots out of the holder much like a trebuchet. That way you can view your crash from an over the top and downward view ala Motogp. The shot would be incredible and worthy of ABC's agony of defeat fame. In an emergency stop it just whacks you in the back of the helmet?

  6. Well I have a set of Dual star heated grips, work well.

    I wired a kimpex heater to my seat and put it on a hot grips pulsed width controler for a heated seat

    wired up another hot grips controller for my widder vest - the vest is heated but it loses heat to the outside, looking for a better vest with better insulation.

    I have an old set of widder heated gloves but never wired them for the vfr, they are well insuated and work good in low temps.

    I get too stiff riding in cold and dont enjoy it, so I dont ride much in the cold anymore. I just prepare for it, like my ride home from Texas last year it was 30 degrees all day long-the heated stuff came in handy. I unplugged a headlight to keep from taxing the stator too much.

  7. Thanks for the detailed write up with pictures. I too am looking into heated grips in these cold temps. I haven't bought anything yet, but will wire a rheostat into the system upon installation.

    Rheostat: I've been to radio shack, auto parts stores, and two specialty electrical shops trying to find the right rheostat without luck. I've pretty much decided on this product since I can't find anything better:

    Heat Troller

    The heat troller controller pretty much adds $50 to the kit, but I can't find anything better and cheaper...

    Also: how did you wire the throttle side to prevent the wires from binding or flexing everytime you twist the throttle? I wonder if wire flex is inevitable eventually causing fatigue falure.

    I also haven't found anything to make me believe one heating element is better than another, so I'll probably just buy the whole kit. Suggestions on other products???

    I dont think heat trollers are worth the added expense since hi and lo are more than adequate for me - however if you tried it and find you need fine control then thats your perogative. Kimpex heaters require the use of a heavy inline reisister, I used to have them and well they work ok but there are newer types that use a double circuit heater for hi and lo - much simpler design and easier to keep the wireing sorted. So yes heaters with no resister are superior design.

    Electrical tape on the bar to keep the bar from drawing off heats sounds good on paper but the tape will not be able to withstand the heat and soon will be sliding all over the place when in use, the heat just emulsifies the glue. I suggest finding a throttle jacket like the one on the throttle side, cut off the ends and EPOXY it to the bar - most epoxys can handle the heat and harden solid, jbweld, delrin. Its kind of suprizing when your grips start rotaing when ever you use the heaters. Especially the throttle, twist and nothing happens, freewheeling grips.

  8. Well I took the plunge and ordered a zumo 550, my quest is a lost cause. I have gotten used to traveling with a gps and found it to be invaluable, I do love maps but you miss all the great side roads in the places you have never been before. You have to spend hours pouring over a map ahead of time, when all you have to do on a gps is tell it to avoid interstates and such..

    http://www.pcnation.com

    Good price, free shipping, no tax!

    1 ZUMO 550 PORTABLE GPS GPS PERP 611.80

    _________

    Sales Tax: 0.00

    Shipping 0.00

    Total $: 611.80

  9. I found my Garmin quest to be invaluable on my 50k miles of trips with it, but unreliable with it tendancy to break the antenna. I hope the zumo is more rugged I am going to replace it this winter with a zumo. I like that I wont have to update maps all the time when going accross country, there is more than enough memory for the entire us. The quest was lacking in capacity, small buttons and of course the flimsy antanne. How easy is it to use the built in mp3 player?

    And yes mapsource doesnt have enough roads marked as dirt, since it was always trying to route me on dirt roads. You have to be smarter than the gps. Usually its just a few miles more but that lake city route I know well! That one would have been hell on a Wing. You can tell it not to route you on a dirt road but they still do sometimes if you have it set for shortest distance instead of fastest route.

  10. Just to add a note about viosport, I have had one of the cameras for 2 years now and it has taken a beating. So much so the wires pulled loose. I asked them if they could repair it, thinking it would need a new cord ( for which I was prepared to pay) Knowing the warranty has long since expired! Here is there response. I have had three different messages from three different customer care pros, and each one has been above and beyond what I expected - in terms of customer service - They are replacing the camera! Wow! Cant ask for a better run outfit than Viosport!

    ----- Original Message -----

    From: V.I.O. Customer Care

    To: miguel@vfrdiscussion.com

    Sent: Wednesday, October 03, 2007 10:37 AM

    Subject: V.I.O. Order #11084

    Hello Miguel,

    We have received your returned AC3; it appears that the problem was not a warranty issue. The cable seems to be pulled apart, and melted possibly due to contact with the engine. Damage of this kind is not covered under the warranty. However, we value you as a repeat customer, so we will make an exception and take care of you this time. We will be sending a replacement AC3 to you today.

    Thank you for your continued interest in our products.

    Please feel free to contact us with any further questions or concerns.

    Best regards,

    John

    Customer Care Team

    V.I.O. Inc.

    www.vio-pov.com

    1.888.579.2267

  11. ... Two viosport cameras that use minidv camcorder to record onto.

    looked up the viosport website... $850 for a set...

    I'll wait for the dollar to drop some more vs the Euro... :thumbsup:

    one is plenty, I did not buy all this stuff at once, over the years I collected more. My camera is a cheapo cannon zr300, it sometimes jiggles the tape and I get wierd checker board blips on the video. Viosport seems to make the best cameras with the best connectors and such. They really are top quality, they do not however have the best mounts nor do they have a protective camera enclosure.

    http://www.bulletcam.com has a great little mount that attaches with a velcro like industrial strength fastner - but thier cameras suck and they have poor customer service.

    http://www.helmetcamera.com these guys make a nice protective enclosure for the camera but from videos my friend Sfarson took hes not happy with the quality of the picture, they have however started selling dvr recorder that is all digital, no tape.

    http://www.viosport.com is the camera set I chose I have the ADVENTURE CAM 3 two of them, I bought seperatly. I like them they do not however have a protective enclosure and the mounts are inadequate. SO I took the best of each of these companies and made my own. They have a new digital DVR that looks like it would be perfect for motorcycling too called the POV1

    as far as my two camera setup I took apart the power connector/microphone on one and soldiered in another so I can flip a switch and change cameras on the fly, and I use a mini codura magnetic tankbag and a I have my cannon mini dv recoder inside a pelican case to keep out the rain or should the tankbag fall off. Trial and error mainly on the setup. I even bought a miniture multiplexor but it was too bulky once you wired it up for use. The switch Idea was perfect for me. I use ram mounts for the cameras or the plastic clips I got from bulletcam.

    gallery_491_3056_547324.jpg

    viosport cams bags batteries and cameras

    gallery_491_3056_1512049.jpg

    The switch I wired up a switch, its on the wrong side, it orginally for for a mp3 player where I mounted it so I turn the bag around backwards to operate it with my left hand.

  12. I figure it's approriate to get out of the new members forum with this.

    '85 VF700F, got off of craigslist for 900.

    It has issues;

    Needs top radiator, water pipe O-rings in the front bank, right engine cover gasket, tank, mirrors, turn signals to start with.

    The bike runs and shifts.

    It has Ching Shen cruiser tires, which have to go.

    Over 30K miles means check valve clearances, and hope there's not other internal issues or electrical problems.

    It has an ugly 4-1 homemade exhaust system that sticks out so far on the right, you can't lean the bike into turns on that side!

    The paint job is the color of a rotten orange with the orange peel surface.

    Anyway, I hope to bring this little gem back from the brink.

    I've got parts coming in the mail to hopefully get the bike on the street.

    I've already started the paint job, getting it back to white.

    I'll throw up a couple of pics by this weekend.

    The one thing I could use is a fuel tank. This one has a dent in the side, which is no big deal, but the fuel inlet apparently is warped, and the cap does not seal.

    I am thinking of putting on an aftermarket base/cap if I can't find a replacement, but need to try to find one that fits this tank.

    before01.jpg

    Here's a shot of the before. Well, almost. A white base coat has already been started on before the thought occurred to take a before picture.

    Thanks for the offer of parts. Already made a list and ordered parts for the first round of fixes;

    radiator, o-rings, gaskets, turn signals, mirrors, etc.

    Hopefully round one will get me on the streets riding.

    Fall is coming, and here in N. GA. fall lasts a long time. This would be a nice bike to run the tail of the dragon on. With some good tires, of course. The Ching Shens the bike came with suck.

    The gas tank is the biggest unresolved issue. Either keep the tank and put in an aftermarket gas cap (welded, screwed on, or riveted) or get another tank. Hmm...

    The radiator came in, it turns out it's from a VF700 not VF700F, so mount points, etc. don't match. It only cost $10.00 + S/H.

    All I really need is the upper radiator inlet cap base, so I'll just take it off my new radiator and sweat it onto the original. Should be good to go.

    The motor was stuttering with low power. I was sort of fearing the worst, since it turns out that the last owner actually rode the bike with a dry cooling system!

    The rear two plugs were just laying there, not tightened down. After torqueing down the rear plugs, guess what? Vroom!

    Here's hoping that my biggest problem is whether to go stock on the paint job & decals or not. unsure.gif

    radiator01.jpg

    Here are the two rads with the inlet pipe ends removed.

    radiator03.jpg

    Here's the good one after it was sweated onto the good radiator.

    There are now no leaks in the cooling system, however it looks like there may be a blown header gasket.

    I'm getting white vapor out the tail pipe and it's not oil. There is distilled water in the cooling system, so there's no smell.

    No worries, it's an opportunity to grind the valves and inspect the cylinders.

    Woo hoo! we get to drop the engine!

    Now that that's done;

    The tank is at the radiator shop for an acid dip and lining with red-cote. The best commercial grade tank liner by far, IMHO.

    The leaky gas cap will hopefully be solved by putting a cork gasket behind the rubber gasket in the cap.

    Now to go shopping for head gaskets, O-rings, etc. for the tear down.

  13. 146_0310_Oil-zoom.jpg

    When motorcyclists discuss engine oil, they quickly polarize into two groups. There are those who

    think all oils are basically the same, and that anyone spending more for premium oils is wasting his

    money, and there are those who feel there is a difference and are willing to spend the money to get

    the best product available. However, both groups share a lack of scientific information allowing

    them to make an informed decision. To offer some insight into this heated topic and help you

    determine which oil is right for you, we've decided to delve into this outwardly simple-but very

    complex-product. In Part One of this two-part series, we'll dissect the real what, how and whys of

    motor oil.

    The first thing you need to know about motor oil is what it does for your engine. Motor oil

    actually has several purposes, some of which may surprise you. Obviously, lubrication is the main

    purpose. The oil serves as a layer of protection between the moving parts, just like shaving gel

    does between your skin and a razor.

    However, oil also acts as a dispersant, which means it holds damaging stuff like dirt and metal

    particles suspended in the oil (rather than letting them settle to the bottom of the oil pan where

    they can be recirculated through the engine) so they can be removed by the oil filter. Then there is

    the job of corrosion retardant. By reacting with the nasty acids created by combustion, oil actually

    prevents these byproducts from damaging the internals of the engine. For instance, when combustion

    takes place, sulfur molecules in gasoline occasionally combine with air and water molecules, forming

    a vile brew called sulfuric acid. Left unchecked, this acid will eat away at internal engine

    compounds. Good oils, however, contain enough of the right additives like calcium, boron or

    magnesium to neutralize these acids.

    Cooling is another important factor. Oil serves to cool hot spots inside an engine that regular

    coolant passages cannot reach. Since coolant usually only deals with the hottest parts of the

    engine, like the cylinders and cylinder head, there are many internal engine components that depend

    on oil for cooling as well as lubrication. For example, the transmission and clutch rely heavily on

    oil to regulate temperatures, since excessive heat expansion can change tolerances and cause

    clearance-related problems. Another area that uses oil for cooling purposes is the undersides of the

    pistons; with pistons becoming thinner for less weight, yet dealing with ever-increasing compression

    ratios, keeping the piston assembly cool is vitally important. Parts such as these can expose oil to

    extreme temperatures, so this is one reason that thermal stability is so important for motorcycle

    engines. We will do a specific test in Part Two to predict the oils' ability to survive in extreme

    heat.

    These three oils have the proper JASO label, which shows they have tested and passed the JASO

    certification standards. The MA standard is for high friction motorcycle applications, so you'll

    know the oil is specifically tailored for use in your sportbike-not some econobox car.

    Who is the API?

    The American Petroleum Institute (or API) was established in 1919 as an industry trade association

    with one of its goals stated as "promot(ing) the mutual improvement of its members and the study of

    the arts and science connected with the oil and gas industry." Today, the API impacts the consumer

    market through the development and licensing of engine oil industry standards. On most oil

    containers, you will find a small circular label that says "API" along with letters like SG, SH,

    etc. Each of these letters represents a very complex set of specifications and tests that have to be

    met in order for an oil to carry the API designation. When you see an oil with the API symbol, this

    means the company has paid a license fee to the API, and in turn the API has tested its product to

    ensure it meets the applicable standard. If the API grades are simply listed on the bottle without

    the circular API symbol, this means the company claims to meet the API standards, but has decided

    not to obtain API licensing. This process is very expensive, and therefore many smaller producers

    choose not to be members, even though their products may be good enough to pass.

    This is the proper API "donut," which signifies that the oil manufacturer has paid for and

    successfully passed the API standards test for SL/CF designation. These standards/designations

    change constantly every few years, as the auto manufacturers struggle to deal with ever-stringent

    federal fuel economy and emissions standards.

    146-0310-ShearTest-zoom.gif

    Every few years the API releases a new standard that is often specified by auto manufacturers, with

    the changes usually aimed at achieving lower levels of friction to obtain higher fuel economy, and

    to deal with other emissions-related issues. This is a never-ending battle in the automobile

    industry, as stricter federal emission and fuel economy standards are being imposed on automobiles.

    The API works with the auto industry to ensure that the oils are doing everything possible to reach

    these goals.

    146-0310-CarvBike-zoom.gif

    The motorcycle industry followed the ever-changing API service designations until a few years ago,

    when the SJ designation lowered maximum levels of certain additives used to reduce metal-to-metal

    friction. (The latest API designation is SL.) Specifically, the maximum allowable phosphorous

    content was lowered from 0.12 percent to 0.10 percent due to its negative effect on some catalytic

    converters. An engine burning oil will pass this phosphorous through the exhaust system, resulting

    in damage to oxygen sensors and catalytic converters. Since the EPA requires all emissions-related

    parts to be covered under warranty for seven years, this was a major motivator for manufacturers to

    meet the new standard.

    Who is the JASO?

    The motorcycle OEMs felt that lower levels of phosphorous and the introduction of more friction

    modifiers (aimed at higher fuel economy in cars) was not in the best interest of motorcycle engines.

    Since phosphorous is an important antiwear component, lower levels could reduce the ability of oil

    to protect transmission gears, since motorcycles share engine oil with the gearbox. Plus, added

    levels of friction modifiers could cause problems with slipping clutches, as well as less than

    optimal performance of back-torque limiting devices that lessens wheel lock-up on downshifts.

    Note that these labels list only the API and JASO standards in text form without the proper labels.

    This means the manufacturers claim their product meets or exceeds both standards, but haven't paid

    the fee for licensing (and testing). Note that the process to carry the official labels is very

    expensive, so smaller oil manufacturers may choose not to obtain licensing, even though their

    products may pass the tests.

    Rather than continue to rely on specifications dedicated to automobiles, the Japanese Automotive

    Standards Organization (or JASO) developed its own set of tests specifically for motorcycles. JASO

    now publishes these standards, and any oil company can label its products under this designation

    after passing the proper tests. JASO offers two levels of certification, MA (high friction

    applications) and MB (low friction applications). JASO requires that the entire product label be

    approved before it can carry its label. If a label does not have a box with a registration number

    above the MA or MB lettering, it could be nonapproved oil whose manufacturer claims its products

    meet JASO standards when it may not have actually passed the tests.

    These standards also include a test specifically designed to measure the oil's effect on clutch

    lock-up, as well as heat stability and several other factors related to motorcycle engines. Our

    advice here is pretty simple: Read your manual, and if it calls for an API SG oil, use that. Don't

    substitute a higher API designation oil like SL, because it will contain less of some additives like

    phosphorus, and it may contain other additives that will yield higher fuel economy in a car but

    could cause slippage in your clutch. (More on that later.)

    While it may not be the perfect answer, you can also be safe by selecting JASO-labeled oil, because

    you will know that it has passed a bank of tests developed by the motorcycle industry. A quick look

    in several 2002-'03 owner's manuals showed that an '03 Kawasaki ZX-12R and most Hondas were the only

    sportbikes in our shop carrying a mention of JASO.

    What Are Base Stocks?

    Motor oils start with a base oil mixed with various additives. These base oils often account for

    approximately 80 to 90 percent of the volume, and are therefore the backbone of oil. Everyone knows

    that some oils are petroleum-based and some synthetic, while others are labeled semi-synthetic. What

    does all this mean? Well, not as much as it used to, because the lines are now blurred in the case

    of synthetic oils.

    For our purposes, petroleum oils are the most basic and least expensive oils on the market. They

    are created from refined crude oil and offer good properties, though they are generally not as heat

    resistant as semi-synthetics or full synthetics. On the other end of the spectrum are synthetic

    oils. A synthetic oil has been chemically reacted to create the desired properties. Semi-synthetics

    are a blend of the two base stocks.

    The API groups oils into five major categories, each with different properties and production

    methods:

    Group I: Solvent frozen mineral oil. This is the least processed of all oils on the market today

    and is typically used in nonautomotive applications, though some of it may find its way into

    low-cost motor oils.

    Group II: Hydro-processed and refined mineral oil. This is the most common of all petroleum oils

    and is the standard component of most petroleum-based automotive and motorcycle engine oils.

    Group III (now called synthetic): The oils start as standard Group I oils and are processed to

    remove impurities, resulting in a more heat-stable compound than possible as a standard Group I or

    II oil. Some examples are Castrol Syntec automotive oil and Motorex Top Speed. These are the lowest

    cost synthetics to produce, and generally do not perform as well as Group IV or V oils.

    Group IV: Polyalphaolefin, commonly called PAOs. These are the most common of the full synthetic

    oils, and usually offer big improvements in heat and overall stability when compared to Group III

    oils. They are produced in mass quantities and are reasonably inexpensive for full-synthetic oils.

    Since they are wax-free they offer high viscosity indexes (low temperature pour point) and often

    require little or no viscosity modifiers. Examples include Amsoil and Motorex Power Synt.

    Group V: Esters. These oils start their life as plant or animal bases called fatty acids. They are

    then converted via a chemical reaction into esters or diesters which are then used as base stocks.

    Esters are polar, which means they act like a magnet and actually cling to metals. This supposedly

    offers much better protection on metal-to-metal surfaces than conventional PAOs, which do not have

    this polar effect. These base stock oils also act as a good solvent inside the engine, translating

    into cleaner operation. Esters are the most expensive to produce, and oils manufactured with them

    usually cost much more. Due to this higher cost, many companies only fortify their oils with esters.

    Some examples are Bel-Ray EXS, Torco MPZ Synthetic and Maxum 4 Extra. Motul 300V, however, uses 100

    percent ester as its base oil, and is one of the more expensive oils.

    The grouping of these oils is the source of much controversy. One topic that has been debated is

    what can be labeled a "full synthetic oil." In 1999, Mobil brought a complaint against Castrol for

    changing the base oil in its Syntec product. They had used a Group IV PAO, but had changed to a

    Group III base oil. Mobil contended that Group III oils were not really "synthetic oil" and should

    not be labeled as such. After many expert opinions were heard, the National Advertising Division of

    the Better Business Bureau sided with Castrol and said that Group III oils could be labeled

    synthetic. Since that time there has been a lot of growth in this product type due to its low cost

    and similar performance to traditional synthetics. Many traditionalists still argue that Group III

    oils are not true synthetic oils.

    Additives to the oil

    Additives are the other 10 to 20 percent of the product that help the base oil do things that it

    otherwise could not. Additives fall into several basic categories:

    Detergents/Dispersants: These ensure that foreign materials in the oil stay in suspension to allow

    the filtration system to remove dirt or debris.

    Corrosion Inhibitors: These prevent oil from deteriorating from the attack of free radicals or

    oxidation.

    Antiwear: These are perhaps the most- discussed additives, which serve to protect the engine from

    metal-to-metal wear. Common antiwear additives are phosphorous and zinc. Other antiwear additives

    include friction modifiers like molybdenum disulphide (or moly).

    Acid Neutralizers: Additives like calcium, magnesium and boron act to absorb acids created during

    combustion to protect the engine. They are typically indicated by the TBN (Total Base Number). A

    higher number means the oil should last longer and provide increased protection against

    combustion-based acids.

    Other additives such as foam inhibitors, viscosity modifiers and antirust components may also be

    present in motorcycle oils. In particular, antifoaming additives are important due to the high RPMs

    that can create cavitation and starve bearings from necessary lubrication in the process.

    Viscosity

    If you ask someone with years of riding under his belt what viscosity oil he uses, he may answer

    "20W-50." All multiviscosity oils carry two numbers. In simple terms, the first number is the oil's

    viscosity when cold (32¯Fahrenheit/0¯Celsius), and the other is the oil's viscosity at operating

    temperature (212¯F/100¯C); the "W" stands for "weight" or viscosity, which is simply the liquid's

    resistance to flow. In other words, when the oil is cold it will flow like a 20-weight, but when hot

    it will act like a 50-weight. In order to overcome the natural thinning that occurs as oil heats up,

    a component known as a viscosity modifier is added. This is a complex polymer that swells due to

    heat, the net result being that the oil thins less.

    Typically, synthetic oil contains less of this additive, or in some cases none at all due to its

    naturally higher viscosity index. This is another reason why they are better suited for the wide

    range of temperatures and riding conditions associated with motor-cycle use. Viscosity modifiers are

    one of the first additives that wear out in oil, and a big reason that some synthetic oil

    manufacturers claim longer service life. Since they are naturally a multigrade product without the

    chemical modification mineral oils require, synthetic oils will hold their viscosity grade longer.

    The reason the old-timer may suggest thicker oil is because in older engines with higher

    tolerances, thicker oils were necessary to keep oil pressure up. Others believe the use of higher

    viscosity oils results in better protection because high-performance engines are harder on oil. This

    isn't true in modern engines, and using oil thicker than specified can actually harm an engine.

    Internal oil passages and galleys may not be large enough to allow thicker oils to penetrate and

    flow as well, which can possibly cause starvation. In fact, many race teams use the thinnest oil

    possible to gain extra horsepower by lowering the parasitic losses that occur when using

    thicker-than-necessary oil. The higher film strength offered by synthetic base stocks helps racing

    engines survive even endurance races when running ultra-lightweight oils. Of course, these engines

    are typically rebuilt after each race, so we do not suggest using a racing oil in your streetbike.

    Refer to your owner's manual and use the viscosity of oil corresponding to your riding conditions as

    specified by the manufacturer. The manuals often have a table with various temperatures allowing you

    to select the right viscosity.

    Can synthetic oils cause my clutch to slip?

    To answer this in one word: No. Clutch slippage is caused by many things, but the use of synthetic

    oil alone is usually not the culprit. The truth is that some bikes seem to suffer clutch slippage no

    matter what oil goes in them, while others run fine with any oil. This is most likely caused by

    factors other than the oil, such as the spring pressure, age and clutch plate materials. If you have

    a bike known for clutch problems, you may have to be more selective in your oil choices. Moly is

    often blamed for clutch slippage, and it can have an effect-but moly alone is not the problem. We

    wish there was a hard and fast rule to follow, but it is just not that easy. Simply put, you will

    have to try an oil and evaluate it. If you experience slippage with the new oil, and have not had

    problems before, it may be the oil. The plates and/or springs could also be worn to the point that

    they have finally started to slip. Simply change back to the previous oil and see what happens. You

    can also check the test data in next issue's article to see if that particular oil has a significant

    amount of moly. If so, try one that does not have as much moly next time.

    We talked to Mark Junge, Vesrah's Racing representative, who has won numerous WERA national

    championships using Vesrah's clutches. He said that in his years of engine work he has yet to see a

    slipping clutch that could be pinned on synthetic motor oil. Junge felt that nearly every time the

    clutch was marginal or had worn springs, the new oil just revealed a problem that already existed.

    Stay tuned for Part Two: Analysis, Wear and Dyno tests

    This is the first part in a two stage article, so please stay tuned to the next issue where we will

    reveal the test data from an analytical oil laboratory as well as the results of our dyno horsepower

    shootout, where we will have a face-off of two different products to see if changing oils can yield

    horsepower gains as some manufacturers claim.

    This article originally appeared in the August, 2003 issue of Sport Rider.

    In the first portion of Sport Rider's oil test ("Oils Well That Ends Well?" August 2003), we

    covered the overall makeup and functions of motor oil to give you a basic understanding of its role

    in the performance of your engine. In this portion-the second and final part of the article-we go

    into a detailed analysis and testing of 22 oils to see what makes them different from one another,

    including comparing motorcycle-specific oils to automotive products. We also run a dyno test to see

    if the claims of increased horsepower made by some oil producers are really true.

    Spectrographic Analysis

    Presented first is the spectrographic analysis of each of the tested oils. Using units of parts per

    million (ppm) to show the amount of additives in each product, this test utilizes an atomic emission

    spectrometer to measure the wavelength of light emitted from each oil sample as it is "ionized;" in

    simplistic terms, this is similar to sticking the oil into a microwave oven, then using a prism to

    split the light emitted as the oil burns. Since each element has its own light wavelength, a

    computer compares each light measurement to a standard emission, and then calculates the amount of

    that particular element.

    We called on Analysts Inc. in Norcross, Georgia (www.analystsinc.com, 800/241-6315), to perform the

    spectrographic analysis testing. An ISO-9002-certified facility (meaning their lab meets strict

    worldwide quality-control specifications), Analysts Inc. has been in business since 1960, and is

    considered one of the top oil-testing labs in the country. They are able to identify extremely small

    amounts of metals and additives, and in some cases can detect as little as one ppm. If you send them

    used oil for analysis, they can generate a metal contents report that will help you discover

    internal engine problems before they occur. Most large diesel fleets use this to determine

    maintenance schedules.

    This type of analysis also reports the absolute viscosity of the oil, and the total base number

    (TBN). The TBN is determined by measuring the milligrams of acid neutralizer (potassium hydroxide)

    required to nullify all the acids present in a one gram sample of oil. Viscosity retention and TBN

    are very important in deciding when to change your oil. A TBN of three or less typically denotes a

    failure of the oil to absorb acids. Oils with a higher initial TBN are therefore better suited for

    longer change intervals, assuming the base oil is of sufficient quality to maintain its specified

    viscosity over time. The subjects of base oil quality and viscosity retention are very complex, and

    are discussed later.

    These elements are the most commonly discussed because they are one of motor oil's most important

    components. Several additives fall into this group, including phosphorous. The maximum level of

    phosphorous allowed in some automotive oils has been reduced by the new API standards, due to its

    effect on catalytic converters. Zinc is another additive in this group, as is molybdenum, usually

    referred to as moly. These antiwear additives serve as a back-up to the oil film in protecting

    engine components. They are activated by heat and pressure, forming a thin layer between metal parts

    that would otherwise come in direct contact, preventing permanent engine wear.

    Looking at the graphs, it's interesting to note a wide variation in additive amounts. For instance,

    examining phosphorous levels in the antiwear additive graph (remembering the API limitations) shows

    that two automotive oils contain approximately 1000 ppm (Valvoline and Castrol Syntec), while the

    Mobil 1 product contains 1391 ppm. The average of the motorcycle-specific oils is 1322 ppm; the

    automotive oils average 1157 ppm. The Maxima Maxum products have the highest levels overall, with

    almost three times the amount found in the lowest product tested. The products with the lowest

    levels are Silkolene Comp 4, Yamalube and Honda HP4.

    A similar correlation can be seen with zinc. The Maxima products again show the highest levels at

    almost 2000 ppm, while the Yamalube and Silkolene products again end up on the bottom of this list.

    The difference here between automotive oils and motorcycle-specific products is not as great,

    presumably because this additive is not regulated by the API. In fact, Valvoline is the only auto

    oil containing less than 1400 ppm. While the average motorcycle-specific product contains 1414 ppm,

    the automotive oils average 1328 ppm-not a huge difference.

    Moly is often referred to as a friction modifier, but it is actually a solid metal dispersed in

    some oils. Because it has such a high melting temperature (4730¯ F versus 2795¯ F for iron), it

    works great as a high-temperature, high-pressure antiwear agent. Some claim that because moly is so

    slick, it can cause clutch slippage. In fact, some motorcycle manufacturers specify oil without moly

    due to this problem. The moly issue is such that Honda offers its HP4 both with and without it.

    Looking at the moly graph data, however, shows that even Honda's "moly-free" product contains 71

    ppm. Many of the products contain less than five ppm of moly, which is the threshold measurement on

    this test (meaning any amount less than five ppm will not be detected). Both Torco oils contain a

    significant dose of moly, while the Maxum Ultra and Motul 300V Factory contain far less. The Mobil 1

    automotive oil contains 92 ppm, while the MX4T motorcycle-specific version has an undetectable

    amount. Only six of the 19 motorcycle oils we tested use moly at all. Those that do, however,

    average 298 ppm. Considering that many oils contain five ppm or less, 298 ppm is a significant dose.

    One common claim is that motorcycle oils have specific additives that are more suited for

    motorcycle engines. Based on an average of the three automotive oils we tested, the bike oils do in

    fact contain more of everything except calcium and boron. Note that the average moly content, which

    is often the friction modifier of choice, is higher in the motorcycle oils than the car oils mainly

    due to the three bike oils that use an extremely high moly content.

    Acid Neutralizers

    We charted the three most common additives (boron, calcium and magnesium) used to neutralize acids

    produced inside an engine during combustion. In this category, we can see that the car and bike oils

    are different in some cases. Every company seems to agree that some dosage of calcium is required.

    The highest amount is Amsoil at 4843 ppm, which explains its very high TBN of 14.42. Amsoil does not

    use significant dosages of either magnesium or boron, though; many other oils use both of these to

    bolster their acid-fighting ability. Maxum Ultra contains only 986 ppm of calcium, but supplements

    that with the highest dose of magnesium in the test at 1275 ppm. The Mobil MX4T product uses 699 ppm

    of magnesium and 221 ppm of boron. Another difference between the auto and bike products offered by

    Mobil is the use of magnesium. Mobil 1 automobile oil contains only 33 ppm of magnesium.

    Another common claim is that the higher price of motorcycle-specific synthetic oils allows oil

    manufacturers to use not only better and more heat-resistant base stocks (as shown in the heat aging

    data), but also more additives. Our averaged data shows that in general, the synthetic oils contain

    as much or more of each additive. Note, however, that we only tested two motorcycle-specific

    petroleum oils, and results could vary with more oils tested.

    Looking at overall averages, the bike oils have an average of 1986 ppm of calcium versus the car

    oils' 2702 ppm. While the bike oils average 296 ppm of magnesium, the car oils muster only 54 ppm.

    Since many of the bike oils do not use any boron, their average is only 96 ppm compared to the car

    oils' 116 ppm. However, looking only at bike oils that use boron as part of their additive package,

    the average is 253 ppm. The bike and car oils are clearly different in this category.

    This photo of two oil samples before and after the heat test shows how some of the Group III

    synthetics are now using better-quality base stocks. The two top tins show Castrol Syntec automobile

    (left) and Motul 300V (right) before the heat test; the two lower tins are both oils afterward

    (again, Castrol left, Motul right). Note the similarity in color between the oils in the post-heat

    test samples.

    It's pretty obvious which of these products should do the best job of keeping corrosive acids in

    check when looking at the TBN. Topping the list is Amsoil, both Motul products and the automotive

    oil Castrol Syntec. A lower TBN does not mean the oil is bad, it just means that the drain-interval

    potential is not as great. If you change your oil every 1000-2000 miles, then you shouldn't be

    concerned with this value. Others should take at least a cursory look at this category, however.

    It's interesting to note a trend toward longer oil-change intervals in the automotive world. For

    example, BMWs now come with factory-proprietary synthetic oil, and the on-board computer usually

    suggests oil changes every 15,000 miles or so. However, BMW engines have oil sumps larger (their

    2.5L six-cylinder holds seven quarts) than most similarly sized engines, as well as high-capacity

    oil filters. Mercedes-Benz follows a similar plan, using full synthetic oil with a change interval

    of 10,000-16,000 miles. Being the skeptical type, we tested oil from a BMW engine at 7500 miles,

    only to find the oil within viscosity and all other standard values-meaning it could have been left

    in longer.

    Don't let fancy colors influence your opinion of an oil's quality or sophistication-some are just

    dyes that quickly burn off. Note how this sample of the Motorex PowerSyn synthetic oil quickly loses

    its green hue after just one hour in the heat test.

    Although not the final word on an oil's overall quality, some oils showed marked

    degradation in color during the heat test. Note the nasty coloration of the Torco T4R sample in the

    post-test tin.

    The truth is that engine oils are better than ever with regard to base stocks, as well as viscosity

    improvers and acid neutralizers. If you don't have a 12-month riding season, you should add an extra

    oil change before you winterize your bike to prevent that used oil (with corrosive acid buildup)

    from sitting and possibly damaging your engine internals. As long as your engine isn't highly

    stressed, whether through competition or extreme mileage, our suggestion is to simply follow the

    change interval specified in your owner's manual, and spend more time riding and less time worrying.

    Of course, this assumes that your engine is in good mechanical condition; problems like fuel or

    coolant diluting the oil could mean disaster a lot sooner than 1500 miles.

    Evaporative Heat Stability Test

    The oil inside your engine is subjected to an extreme environment. Sure, the coolant-temperature

    gauge may only show 200¯ F, but there are many internal engine parts that become far hotter. In

    order to determine each oil's ability to survive in such a climate, we subjected samples to a test

    commonly known as the Noack method. This test takes an oil sample and cooks it at 250¯ C (the

    estimated temperature of the piston-ring area, which is the hottest an oil should get) for one hour.

    Before and after the exposure, the sample is carefully weighed on a precise laboratory scale.

    Because parts of some oils are unstable at these temperatures, they burn off during the test, and

    that loss can be accurately measured.

    The higher the percentage of weight retained (meaning less oil has burned off), the better. As you

    can see in the charts, there is quite a difference between the best and worst oils. The top product

    on this test is the Mobil 1 car oil at 96.1 percent. What is not so clear is that Group III oils

    (synthetics processed from a mineral-base stock) like Castrol Syntec and Motorex Top Speed test

    about as well as Group IV (PAO synthetics) and V (ester synthetics) products such as Motul, Bel Ray,

    Maxum and Torco. This shows that Group III oils are getting better and more heat stable (i.e., using

    better base stocks) for these applications than they were a few years ago.

    We ran both bikes with standard petroleum automobile oil (Valvoline 10W-40) to do our baseline dyno

    runs. We then drained the oil, changed oil filters and ran the synthetic oil for at least 15 minutes

    to circulate it through the engine.

    As expected, the petroleum-based oils such as BelRay EXL, both Valvoline oils and the Yamalube and

    Torco synthetic blends are on the low end of the scale. Proving how good some synthetic blends are,

    top blend performer Castrol GPS actually out-performs one of the full synthetic oils (BelRay EXS).

    In general, however, the full synthetic oils are the winners here, with an average value of 93

    percent, compared to the synthetic blends at 89 percent and the dinosaur oils at 86 percent.

    We suggest you look at this data carefully and determine your needs before picking an oil for your

    bike. While not the only important factor, heat stability is one of the top issues because most

    sportbikes are tuned to the highest levels of performance possible, usually generating intense heat

    in the process. Engine oil must be able to survive these temperatures and not evaporate when you

    need it most.

    We were as surprised as anyone that just changing oil can produce a horsepower boost. Both the R1

    and GSX-R1000 posted some significant gains in midrange and top-end, and were gaining power with

    every run until coolant temps got a little too hot. Before you go rushing to buy this stuff,

    however, check out the viscosity retention test.

    Dyno Test

    Some oil manufacturers and their representatives claim that using their product will result in more

    horsepower. These are special ultra-lightweight-viscosity racing synthetic oils that are said to

    reduce the parasitic drag that oil has on an engine's internal reciprocating components. We decided

    to put these claims to the test-an actual dynamometer test. Two of the full synthetic oils in this

    test make these horsepower claims on their labels: Maxima Maxum Ultra (in 0W-30 and 5W-30) and Motul

    Factory Line 300V (in 5W-30). We took two open-class sportbikes-a Suzuki GSX-R1000 and a Yamaha

    YZF-R1-and ran them with common off-the-shelf Valvoline 10W-40 automobile mineral oil to set a

    baseline dyno run. That oil was drained and replaced with the 0W-30 Maxum Ultra in the Suzuki, and

    the 5W-30 Motul 300V in the Yamaha. After about 15 miles of running to get the oil fully circulated

    through the engine, the bikes were then dynoed again.

    Lo and behold, both the Suzuki and Yamaha posted horsepower gains. While not an earth-shattering

    boost in power, the gains were far beyond common run variations, and weren't restricted to the very

    top end. The GSX-R1000 posted an increase of 3.3 horsepower on top, with some noticeable midrange

    gains as well; even more interesting was that the power steadily increased for several dyno runs (as

    the coolant temp increased). The Yamaha responded nearly as well, with a 2.7 horsepower boost on

    top. It should also be noted that while riding both bikes, there was a noticeable ease in shifting

    with the synthetic oils compared to the automobile mineral oil. Pretty impressive for just changing

    oil, in our opinion.

    But before you go rushing to buy these products, it should be noted that these are racing oils,

    and, despite manufacturer claims of viscosity retention performance identical to standard viscosity

    oils, are made to be changed on a much more frequent basis. You should take a close look at the

    Tapered Roller Shear Test that demonstrates an oil's ability to maintain viscosity over time.

    Four-Ball Wear Test

    With an eye toward evaluating oil's ability to lubricate under extreme pressure conditions, we

    picked a few candidates and ran them through the "Four-Ball Wear Test" (officially designated ASTM

    D-4172). To conduct this test, we enlisted the help of the Southwest Research Institute in San

    Antonio, Texas (www.swri.org; 210/684-5111). SwRI is a huge nonprofit independent testing and

    engineering firm with an entire group of people dedicated to motorcycle-related products.

    This test is used to determine the wear properties of engine oil in sliding contact (such as a

    piston sliding against a cylinder wall). Three half-inch-diameter ball bearings are placed in a

    triangular fixture, with a fourth half-inch ball in the center (in contact with the other three)

    held in place with a clamp. The balls are then immersed in the test lubricant while the top ball is

    spun at 1800 rpm for a period of one hour with a prescribed load of 40 kg (88 lbs.) and a constant

    temperature of 75¯ C (161¯ F). The "wear scar" on the three lower ball bearings is then carefully

    measured (in millimeters) using a microscope and averaged. The smaller the wear scar, the better the

    protection.

    Because this test is expensive, we could not test every product listed in the spectrographic

    analysis, so we picked a few we thought would reveal the most information. We chose the Castrol GTX

    10W-40 automotive oil because it is a simple Group II mineral-oil product that is widely used and

    inexpensive. As an example of motorcycle-specific oils, we picked the popular Mobil 1 MX4T

    motorcycle oil in 10W-40. It is a moderately priced full synthetic oil (approximately $8.99 per

    quart), and should represent all the technology and economy of scale that a large oil producer like

    Exxon/Mobil can offer. We also chose the Amsoil Group IV motorcycle oil. Amsoil makes product claims

    related to the performance of its oil on this test, so we decided to see if they could live up to

    their claims.

    The four-ball wear testing did not show the huge variation expected. All of these oils basically

    perform the same. With any test there is some variation from sample to sample, and this data is so

    close we have to call it a tie, which means all these oils in their new, virgin state do a good job

    of protecting against sliding friction wear. Incidentally, Amsoil did perform up to the test claims

    stated on its label.

    Tapered Roller Shear Test

    We decided to conduct some additional testing aimed at evaluating an oil's ability to withstand the

    shearing loads present in a motorcycle gearbox (but not in the typical automotive engine). One of

    the claims made by most motorcycle-specific oil producers is that motorcycles present a different

    set of conditions than typical cars do, and that therefore you should spend more money to get oil

    formulated specifically for this environment. The meshing of transmission gears is said to shear or

    tear oil polymers over time, resulting in the degradation of oil viscosity and severely reducing its

    performance. As we stated earlier, this may not be so critical if you frequently change your oil.

    However, if you run longer than standard intervals, this oil property is something to strongly

    consider.

    The test we selected to measure this effect is officially called the "Tapered Roller Bearing Test"

    (CEC L-45-99), commonly called TB-20. Recent trials have shown that this test provides the best

    correlation to actual performance compared to other industry shear tests. For the TB-20 test, a

    tapered bearing fitted into a four-ball test machine spins submerged in 40 mL (1.3 fluid ounces) of

    lubricant at 60¯ C (140¯ F) at a constant speed for 20 hours. The viscosity of the used fluid is

    measured and compared to the new/original viscosity, and the percentage of change compared to the

    original viscosity is reported. The higher the number, the more viscosity loss the oil experienced

    during the test.

    We picked Valvoline 10W-40 automotive, Motul 300V 5W-40 Factory line, Mobil MX4T 10W-40 and Motul

    300V 10W-40 oils for this test. Part of the analysis also involves the testing of a reference oil

    with a known viscosity performance in order to measure the variation between tests. In our case the

    reference oil had a total variation of 2.5 percent. This means that differences of 2.5 percent or

    less should be judged as the same, and that these small differences are related to the test method

    rather than product differences.

    We also found the viscosity index, or absolute viscosity, of each sample. This is a measure of how

    long it takes for a set quantity of the oil to flow through a hole at a certain temperature, and is

    expressed in centiStokes (cSt). Unless noted, each sample is a 10W-40 grade.

    The actual viscosity raw data test results are expressed in centistokes (cSt), the scientific unit

    of viscosity measurement. However, after the percentage of viscosity loss column, we have converted

    the centistokes to an approximation of SAE grade to give you an idea of how much viscosity breakdown

    has occurred.

    The various oils show large differences in their ability to endure this difficult test. The one

    commonly available automotive mineral oil tested suffered a 41 percent loss. While this limited data

    does not conclude that all mineral-based automotive oils are bad, it is definitely not a good sign.

    Looking at the motorcycle-specific oils, it's notable that the Motul 5W-40 version does not hold up

    nearly as well as the 10W-40 version (in fact, slightly worse than the auto oil). Motul and Maxima

    both claim that their ultra-lightweight-viscosity oils would last as long as normal 10W oils.

    Because we only tested the Motul version, we cannot say for sure that the Maxima Maxum Ultra would

    suffer the same loss. Yet our dyno test shows that both these oils post a horsepower gain. We

    consider ultra-lightweight racing oils such as 0W and 5W a special category of race products that

    should be changed on a strict regimen. Before you decide to run them, you need to weigh the risk of

    viscosity loss versus horsepower gains and make your own decision. Until more data convinces us

    otherwise, we would stick to something more practical for the street.

    Conclusions

    With all this testing data (and expense), you'd think making a clear-cut decision as to which oil

    is best would be easy. In the case of engine oils, however, there are too many products and

    variables that go into this equation. Due to the financial reasons stated earlier, not every test

    was run on every product, so crystal-clear conclusions aren't in the picture. You must weigh all the

    data we have made available; for instance, the fact that some oils may absorb acids better, but may

    not handle high heat as well. Or that while the four-ball wear test shows that particular automobile

    and motorcycle-specific oils perform identically, the heat and viscosity shear tests show otherwise.

    We did, however, unequivocally answer a few questions. For one, most name-brand motorcycle-specific

    oils are indeed different than common automotive oils, even within the same brand, debunking a

    common myth. Mobil One automotive oil is definitely different than its motorcycle-specific version.

    The same is true for the three oils provided by Castrol, showing that both companies have different

    goals when formulating their automotive and motorcycle products. Whether they perform better-despite

    the data we've gathered-is still a matter of opinion. Another manufacturer, on the other hand,

    appears to have selected the same additives in both of its offerings, which begs the question: Are

    they actually identical and simply relabeled?

    Once again, the final decision is up to you. It's your bike and your hard-earned money-so only you

    can make the decision whether to spend the extra bucks for full synthetic motorcycle oil or simple

    mineral-based car oil. Review the data we have presented, and select the product that is most suited

    to your bike and riding style.

    This article originally appeared in the October, 2003 issue of Sport Rider.

    Part 1: What is motor oil really made of?

    More tech stories

  14. Well my advice? First realize that most everything you shoot is not gold, most of it sucks really - I often boil down an hour of tape to 5 minutes. Second wide angle is the way to go, although a normal camera can take some dramtic shots. I use remote cameras, these are the bullet or lipstick type. Two viosport cameras that use minidv camcorder to record onto. It helps to be riding well while shooting heh. At least well enough. Some wide angle camera can actually make the effect of speed enhanced yet take away the effect of bike lean away at the same time. So you will get some dramatic speed effect the lean angle is negated by the overall wideness of the shot. In that situation a narrow shot will really make the change of direction seem dramatic. Sw.eepers wide angle, tight roads normal angle

    Remote cameras are great but they can get damaged - breaking glass covers is common so you have to get some extras or get a heavy duty casing. If you cant do that and only have one camera your stuck with shooting behind the wind screen with a camera mounted on the tank or some such device. This gives speedo shots which riders want to see but to me thats just eveidence against you should you end up defending your actions. fI found the shape of a VTEC dash is not so great for this type of shooting it takes out most of your field of view. If your windshield has some scratches or some such thing it really reduces picture quality. Get some polish or a new clear windscreen if you are going to do that.

    I wired up two cameras on a switch I built into my tank bag so I can switch between cameras. I just added another camera last year and wanted to be able to take front and back shots.

    I do a lot of cutting like a music video, and try to keep the clips short to keep the viewers attention. Even then its hard to get sombody to want to watch your video so you have to really be willing to cut out the parts where you just going in a strait line, these tend to make viewers close the vid and go do somthing else. I also try to time the cuts to the music just seems to flow better that way. Some dont like music but my camera has an annyoingly loud mic so the bike sound is just garbage or wind noise - wind noise is too distracting. Adding pictures and be dramatic, but dont shoot too much prep stuff, getting ready for the ride type stuff just takes up webspace and nobody cares, unless of course its funny as hell.

    It helps to know the road so you know when to turn on the camera otherwise you can be shooting a lot of crusing or waiting for cars. If you can set the exposure to match the weather conditions that would be ideal, cloudy skys really wash out a picture, I love sunny blue skies!! I find late afternoon shooting is dramatic when the sun is close to setting - the shadows seem to really stand out and make for some neat effects, like your own shadow on the road for example.

    I like to do speed videos and also videos of the scenery - they are two different types of shooting and both enjoyable, nothing like riding in beautiful places. Go out and shoot some video some of them will suck but then you might shoot somthing really great - its like everything else it takes practice.

×
×
  • Create New...

Important Information

By using this site, you agree to our Privacy Policy.